A subgaussian embedding theorem

نویسندگان

  • Shahar MENDELSON
  • Nicole TOMCZAK-JAEGERMANN
چکیده

We prove a subgaussian extension of a Gaussian result on embedding subsets of a Euclidean space into normed spaces. Using the concentration of a random subgaussian vector around its mean we obtain an isomorphic (rather than almost isometric) result, under an additional cotype assumption on the normed space considered.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-Asymptotic Theory of Random Matrices Lecture 18: Strong invertibility of subgaussian matrices and Small ball probability via arithmetic progression

1 Strong invertibility of subgaussian matrices In the last lecture, we derived an estimate for the smallest singular value of a subgaussian random matrix; Theorem 1. Let A be a n × n subgaussian matrix. Then, for any > 0, P(s n (A) < ε √ n) ≤ cε + Cn −1 2 (1) In particular, this implies s n (A) ∼ 1 √ n with high probability. However, (1) cannot show P(s n (A) < ε √ n) → 0 as → 0 because of the ...

متن کامل

Embedding normed linear spaces into $C(X)$

‎It is well known that every (real or complex) normed linear space $L$ is isometrically embeddable into $C(X)$ for some compact Hausdorff space $X$‎. ‎Here $X$ is the closed unit ball of $L^*$ (the set of all continuous scalar-valued linear mappings on $L$) endowed with the weak$^*$ topology‎, ‎which is compact by the Banach--Alaoglu theorem‎. ‎We prove that the compact Hausdorff space $X$ can ...

متن کامل

Towards a Constructive Version of Banaszczyk's Vector Balancing Theorem

An important theorem of Banaszczyk (Random Structures & Algorithms ‘98) states that for any sequence of vectors of `2 norm at most 1/5 and any convex body K of Gaussian measure 1/2 in R, there exists a signed combination of these vectors which lands inside K. A major open problem is to devise a constructive version of Banaszczyk’s vector balancing theorem, i.e. to find an efficient algorithm wh...

متن کامل

Dimensionality reduction with subgaussian matrices: a unified theory

We present a theory for Euclidean dimensionality reduction with subgaussian matrices which unifies several restricted isometry property and Johnson-Lindenstrauss type results obtained earlier for specific data sets. In particular, we recover and, in several cases, improve results for sets of sparse and structured sparse vectors, low-rank matrices and tensors, and smooth manifolds. In addition, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006